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Introduction

This is part I of the final report of 2 research effort conducted at the Ocean
Engineering Department at M.LT,, supported jointly by the Sea Grant Program,

NAVSEA and a consortium of offshore companies consisting of

Conoco Ine.

Exxon Production Research Company

Gulf Oil Exploration and Production Company
Norsk-Hydro

Mobil Research and Development Corporation

Shell Development Company

In part T1 a number of examples, relevant to the offshore industry, are given to
illustrate the theory which was presented in part I. Examples were divided in three
categories: linear dynamics, nonlinear dynamics and snap motions, and equivalent

linearization techniques.



Chapter 1

NUMERICAL APPLICATIONS
OF THE LINEAR DYNAMICS

1.1 Introduction

In this chapter, a number of applications of the solutions for linear cable

dvnamics are discussed, with the intention to illustrate the presented theory.

1.2 WKB Approximation of the Dynamics of Strings with Varying

Tension

The accuracy of the WKB solution for strings with varying fension wos
tested for a linear tension variation. The legs of a tension leg platform were

modeled as a string fived at both ends. We consider two cases.

Case A Case B

Length (m} 549 549
Area (m?) 0.00215 0.00215
Density (kg/m’) 7870 7870
Lower tension (N) 71 108 5 10°
Weight (N/m) 1449 1449
Mass (kg/m) 1907 1907

In the mass term the transverse added mass was included. The ratio of

the top tension to the bottom tension was:
T/Ty 1.21 160

The second case was only selected to show the behavior of the WKE



method near the turning point.

Comparison of the eigenfrequencies

Case A Case B
Eigenmode Bessel WKB Bessel WKB
1 0.83733 0.83744 0.18796 0.19063
2 1.67482 1.67488 0.30076 0.39925
3 051228 2.51231 0.58224 0.508838

The WKB method provides accurate results, even very close 10 the
turning point of the solution. The approximation is increasingly better [or
higher frequencies. because the variation of the static quantities over a wave
length is smaller. In addition to the eigenfrequencies, the eigenmodes are also
well approximated. The "worst” case result is given in figure 1-1, which
shows the approximation for the first mode of case B. Agreement in this

case is still surprisingly good.

The extension of the above ideas to include bending rigidity (necessary
for accurate analysis) has been carried out by [Kim 83], where similarly good
agreement was found.  First order WIB solutions can give very accurate

results with a minimum of computational requirements.

1.3 Parametric Study of the Eigenfrequencies of a Two-Dimensicnal

Cable

The eigenfrequencies of a two-dimensional cable hanging under its own

weight have been studied extensively numerically, as well as experimentally.
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Figure 1-1: Comparison between the Mode Shapes of the
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Pugstey [Pugsley 49, Saxon and Cahn [Saxon 53] and Goodey [Goodey
61} studied the behavior of inextensible cables. Pugsley, and Saxon and Cahn

performed also a limited number of experiments.

Irvine and Caughey [lrvine 74] predicted succesfully using approximate
analytic techniques the cross-over phenomena for a small sag, horizontal cable.
Among the most recent numerical contributions on eigenfrequencies of
extensible cables are: West et al. [West 75), Gambbir and Batchelor [Gambhir
77} and Henghold et al. [Henghold 77 Ramberg and Bartholomew [Ramberg
82] did some experiments on the vibration of inclined slack cables. Although
all of the above authors were able 1o confirm the existence of cross-over
phenomena for extensible cables in the horizontal case, the phenomena of
bybrid modes were not detected. This is mainly due, in the author’s opinion,
to the very small transition region in the cases considered by the above
researchers.  Yamaguchi [Yamaguchi 79] used a Galerkin's expansion with
sinusoidal terms to calculate the eigenfrequencies. He obtained hybrid modes

and the non-crossing of the modes.

In the course of this report, a number of perturbation and numerical
calculations of eigenfrequencies were carried out. We will brielly discuss some

of the results.

1.3.1 Non-Dimensional Parameters

The governing equations in non-dimensional form depend only on 4 non-
dimensional parameters when a uniform cable hanging under its own weight is

considered. They can be written as:

1. The angle of inclination (¢,) of the line connecting the two end
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points with a horizontal.

9. The ratio of the total weight of the cable and the tension

projected on the chord (& = w,L/H cos¢, == w L/Hs).

3. The projected elastic strain: the ratio of the projected tension and

the uniform stiffoess of the cable (8 = HJ/E-A).

4 The ratio of the mass and the mass plus the added mass.

The non-dimensiona! frequency was selected as follows:

WLM/H 2

W =
T

where: w is the frequency
L is the length of the cable
H, is H/cos¢,
M is the mass plus the added mass

H is the horizontal tension

In the case of string: w = 1 n=1 2 3 ..

The above non-dimensionalisation of the frequency has the advantage that
it virtually eliminates the dependency of the eigenfrequencies on h. The
influence of the variation of b on & is small and will not be discussed here.
In the sequel, cables in air will be analysed (h = 1). The results, though,
should be a good approximation for the eigenfrequencies in water when (1.1} is

used.
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1.3.2 Inextensible Cables

The non-dimensional parameters are in this case:

1. ¢, the inclination angle

w_L
2. a = ——, the non-dimensional weight parameter
L]

Three representative inclination angles were selected: 07, 30°, 60°. The
non-dimensional weight parameter was varied between 0 and 5. The cables for
high values of o are extremely slack {for a horizontal cable, o = %

corresponds to a top angle of 68°).

The results can be found in figure 1-2 — 1-4. The solid lines are the
results obtained with the inextensible perturbation theory.  The - marks
denote the results obtained with the numerical central difference schieme (100
points). The numerical solution can be considered as an exact” solution,
considering the resolution of the graph. For small o, the shallow sag
inextensible eigenfrequencies are recovered. The curves are tangential-to a
horizontal line for the small sag inextensible eigenfrequencies. The small sag

results can, therefore, be extrapolated to moderately large values of a. °

The perturbation theory predicts fairly accurately the eigenfrequencies for
the whole range of o and ¢, Only for very high values of « and/or high
inclination angles the predictions are deteriorating. Due to the nature of the
perturbation expansions the prediction will be more accurate for the higher

modes. This can be clearly seen on figure 1-4.



FREQUENCY (OMxLxSQR(M/H%)/PT)

-13

4.88! + _E_
s.eer,

2.%4_*# IR N

.82 ' ' * 1
:—- Lan) a2 = =N
- - . -
= s 0w =
= = = = %

WL /7H¥

Figure 1-2: Eigenfrequencies for an Inextensible Cable,
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{Solid line: inextensible perturbation theory)
(+ marks: numerical central difference scheme with 100 points)
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(+ marks: numerical central difference scheme with 100 points)
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1.3.3 Extensible Cables

The eigenfrequencies of extensible cables (with h = 1) depends on 3 non-

dimensional parameters:

1. ¢, the inclination angle

9. o, the non-dimensional weight parameter (w L/H)

3. B, the projected elastic strain (H/E-A)

There are several possibilities to represent the variation of the
eigenfrequencies in terms of these three parameters. We will brielly discuss

two of them.

First, the projected elastic strain was selected as a fixed parameter. This
corresponds to choosing the ratio of the elastic and the transverse wave speed.
This is a fairly good choice, because the elastic strain is restricted in design
applications to be within a certain range. Yamaguchi [Yamaguchi 79] used
this approach in his paper, while tbe non-dimensional weight parameter was
selected as the independent variable. This allows direct comparison with the

inextensible cables (A good alternative to this could be X3.)

The [ollowing relation between the ratio of the wave speed and the

projected elastic strain exists:

cf] E-A 1 b 1) '
C2 - H. - ﬁ - (1”-)

tr

For steel cables, a value of 400 was selected for 1/8 (wave speed ratio of

20). This can be considered to be close to the lowest acceptable value.
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{Solid line: extensible perturbation theory)
(+ marks: numerical central difference scheme)
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The results can be found in figures 1-5 through 1-8. The solid lines are
the results obtained using the perturbation theory and assuming an extensible
cable. For the slow solution, the first order approximation Qo) = Q) was
used, which provides exponential or sinusoidal slow solutions. The -+ marks
denote the results obtained usipg a numerical ceptral difference scheme
{100 points). The cross-over is predicted accurately for an inclination angle of
0°. For inclined cables the tranmsition region is also well ;;redicted by the
perturbation theory. To prove clearly that no cross-over exists, an
enlargement of the transition zone for an inclination angle of 30° was made in
figure 1.7. Again, the solution breaks down for large values of a and large
inclination angles, as seen in figure 1-8. When the parabolic cylinder [unctions
are used instead of the exponentials in the slow solution, a much better
approximation for large a and large ¢, 18 obtained. This has a drawback in
tbat the perturbation approximation becomes, of course, numerically more
complicated.  Overall, the simple exponential slow solution predicts the
eigenfrequencies fairly accurately. The case selected here (3 = 1/400} implies
high straining of the cable and, therefore, for most appli;:ations the transition
will occur for smaller values of as, for which the perturbation solution will be
increasingly more accurate. For very low values of a. the solution tends to
the eigenfrequencies of the taut string, while for high values of o, the

eigenfrequencies of the inextensible cable are obtained.

The previous graphs bave the drawback that the transition zone 1is
strongly dependent on A. This can be reduced by plotting the eigenirequencies
versus Az For small sag cables, as demonstrated in part I, the
eigenfrequencies depend only on A2, For large sag cables this is not valid. but

the representation in terms of 22 is still useful. X2 can be expressed as:



\ = { .y r : [ = } . cos¥(s,) (1.3)

In figure 1-9 and 1-10 the eigenfrequencies are f)lotted versus hs. The
parameter as is kept fixed and is allowed to take three values (0,05, 1)
Figure 1-10 is an enlargement of the transition zone of the first and second
modes. The eigenfrequency curves were cut off at § = 1/100. The cut-off
value of A% is higher for higher values of a2, for which the transition zone
becomes clearly more pronounced. With the exception of the transition zone,
the shallow sag extensible theory gives 2 good approximation for values of
a, < 0.5, Figure 1-11 provides the shallow sag eigenfrequencies and can be
considered a fairly good approximation for ae < 0.5, outside the transition
gone. For horizontal cables, the modes are erossing over and figure 1-11 will

be approximately valid even for higher values of as.

1.4 Linear Dynamic Analysis of a Guy

The eigenfrequencies for the guy of a guyed tower were calculated using
the i"u;ite differences and an approximate analytical method. The eigenmodes
obtained by the finite difference scheme are also shown. Finally the undamped
transfer functions for the guy, were calculated using both the perturbation

method and the finite difference scheme (100 discretisation points).

The data for the guy are:
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In figure 1-9 and 1-10 the eigenfrequencies are ﬁlotted versus Ai. The
parameter a. is kept fixed and is allowed to take three values (0 , 0.5 , 1).
Figure 1-10 is an enlargement of the tramsition zone of the first and second
modes. The eigenfrequency curves were cut off at § = 1/100. The cut-off
value of A% is higher for higher values of a2, for which the transition zone
becomes clearly more pronounced. With the exception of the transition zone,
the shallow sag extensible theory gives a good approximation for values of
o < 0.5. Figure 1-11 provides the shallow sag eigenfrequencies and can be
considered a fairly good approximation for a. < 0.5, outside the transition
zone. For horizontal cables, the modes are crossing over and figure 1-11 will

be approximately valid even for higher values of a..

1.4 Linear Dynamic Analysis of a Guy

The eigenfrequencies for the guy of 2 guyed tower were calculated using
the fiﬁite differences and an approximate analytical method. The eigenmodes
obtained by the finite difference scheme are also shown. Finally the undamped
transfer functions for the guy, were calculated using both the perturbation

method and the finite difference scheme (100 discretisation points).

The data for the guy are:
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Teop = 1332000 N
Thot == 1155 096 N
Mass = 487 kg/m
Added mass = 6.3 kg/m
Net weight = 41498 N/m
Do = 0.088¢ m
EA = 130 10°N
Length = 103 m
Depth = 42670 m

C = 1.2

Cor = 005

No external current

A static analysis of the problem gives the following results: (see figure

1-12)
— o
mo
bot = .
Ax = $40.88 m
¢“ = 94.399°

¢,, is the angle formed between the cable chord and the horizontal.

The eigenfrequencies can be found in table 1-I. They were calculated
using the finite difference scheme described in part [ chapter 3. The mode
configuration is only approximately symmetric or anti-symmetric, because the
inclination angle destroys the symmetry about the cable midpoint. The results
above - were calculated numerically, but the perturbation theory and even
Irvine's inclined cable results, predict essentially the same values for the

eigenfrequencies.

To calculate the eigenfrequencies approximately with Irvine’s modified
theory for inclined angles, the methods described in part I, chopter 3.8.7 can

be used. We obtain for symmetric modes:
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The eigenfrequencies for the guy are:

calculated by finite differences (100 points)

wlrad/sec)

1 0.9011

[ &

1.1949
1.6086
1.8228
2.3115
2.7527

(]

3.2335

0o =3 » o o

3.7059

Table 1-1:

oo T[]+ 5]

M
with: ke = w [ —
H.

A = { ..‘t?E
H.
H
Hq —_
cosqba

¢, = inclination angle between the cable chord

]

Tiperiod}

6.037
5.258
3.906
3.447
2718
2.283
1.943
1.685

4

]1]2

a E-Ao

H.

kL

. 2
cOs ¢.

and the horizontal

3
;|

mode shape

anti-symmetric
symmetric
symmetric

anti-symmetric
symmetric

antil-symmetric
symmetric

anti-symmetric

Eigenfrequencies, Finite Differences

0

(1.4)
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For anti-symmetric modes:

sin{

k.L

i

In the case of the guy we have:

H.
L
A2

i

1 225 882 N
1036 m
108.17

(1.5)

The eigenfrequencies can now be calculated directly by wusing the above

formulas. For the symmetric eigenfrequencies the transcendental equation has

to be solved or looked up in a table [Irvine 81). As result we obtain:

wirad/sec)

antoine

1

[T ]

00 = & o b

0.9054
1.1861
1.6072
1.8109
2.2908
2.7163
3.1736
3.6218

Table 1-II: Eigenfrequencies, Analytic Method

The eigenfrequencies for the guy are:

T(period)

6.940
5.207
3.909
3.470
2.743
2.313
1.980
1.735

calculated by analytic method

mode shape

anti-symmetric
symmetric
symmetric

anti-symmetric
symmetric

anti-symmetric
symmetric

anti-symmetric

The analytic metbod can give as shown in 1-II reliable estimates of the

eigenfrequencies (and eventually also of the eigenmodes). To give the reader a
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notion about the shape of the modes, some figures for the first four modes
and for the quasi-static solution are presented. For the modes the solution
bas been normalised as described in part I, but with the amplitude written in
non-dimensional form (normalised amplitude - (M)”2 L). The four essential
quantities for each mode are plotted, ie. the tangential displacement, the

normal displacement, the dynamic tension and the dynamic angle.

The second and third modes are symmetric, which is explained by the
fact that the cable is in the region where the first symmetric mode has shifted
to & higher value than a taut string mode, while the third symmetric fnode
bhas not. The dynamic tension is nearly constant or slowly varying for the low
modes shown. ‘The quasi-static solution is the solution to an imposed unit
motion at the top in the normal and tangential direction at the limit of zero

frequency.

The impedance transfer functions at the top have also been calculated at
the top. For a definition of the trapsfer functions see part I chapter 7. The
transfer functions have been calculated by the perturbation method and by the
pumerical finite difference methed. In the perturbation theory, the zeroth
order slow solution was used. To leading order the slow solution is generating

the dynamic tension and the fast solution is generating the dynamic angle.

In figures 1-37 through 1-39 a comparison of the transfer functions of the

perturbation theory and the numerical, finite difference scheme is given.

The peaks corresponding to the anti-symmetric modes are very narrow
and do not contribute to the transfer functions (anti-symmetric modes
w, = 0.90 and w,, = 1.82). The symmetric modes are solely responsible for

the resonance phenomena (w, = 119, wy, = 18], w, = 2.31). The
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List of Figures of Eigenmodes and Quasi-Static Shapes

tangential pormal dyn. tension dyn. angle

first mode 1-13 ‘ 1-14 1-15 1-16

second mode 1.17 1-18 1-19 1-20

third mode 1-21 1-22 1-23 1-24

fourth mode 1-25 1-26 1-27 1-28

tangential 1-29 1-30 1-31 1-32
quasi-static

normal 1-33 1-34 1-35 1-38

quasi-static

agreement between perturbation and numerical solution, in the range

considered, is very good.

1.5 Impedances of a Two-leg System

As a simple example of im.pedances of a multi-leg system, the impedances
of a twoleg system are analysed. For the symmetric configuration the
impedance function S is simply twice the individual leg impedance function.
In this example the guy data described in the previous section are used for the
individual legs (See figure 1-40). In the assymetric two-leg system {figure 1-41}
the static tension in one of the legs was diminished by 200 000 N. The total
impedance function S, is the addition of the individual impedance functions.
The symmetric eigenfrequencies of both leg appear in the total impedance

function.
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Chapter 2

NUMERICAL APPLICATIONS OF
NON-LINEAR DYNAMICS

2.1 Introduction

In this chapter, a number of applications are provided, to demonstrate
the practical implications of the theory presented in part 1. and to validare the
theoretical predictions by comparing them with experimental data and previous

solutions.

2.2 The Non-Linear String

The use of modal expansions was first tested on a non-linear string.
First, some calculations were performed including non-linear drag. which
introduces an amplitude dependent damping. The results obtained can be seen
as a special case of the second numerical application presented in this chapter
(drag forces on a cable) and are therefore omitted. The study of a string with
geometric non-linearity, as discussed in part I chapter 4, was the second case

considered, and is presented in the sequel.

The dimensions of 2 guy of a guyed tower were used for the taut string.
for demonstration purposes.
String characteristies: T = 1 000 000 N

M = 48.7 kg/m
L = 1 036.32 m
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EA = 0214 10! N

The eigenfrequencies in air can be obtained as:
ar (T/M)/?

W= -—-—-———-—-L — 0.434, 0.861, ...

The string was subject at one end to a trapsverse sinusoidal excitation
with frequency equal to the first patural frequency. The coefficient of the
geometric nop-linearity is selected as {see part 1 chapter 4):

EA 1 (Ampl)’
T e1®

[+

= 0.0]

For a realistic strain in the string, of the order of 10-3, this corresponds
to an A/L ratio of approximately 4.5 103, The cese considered was selected

because it can be compared with Oplinger's theoretical results. [Oplinger 60}

Time step as a  Damping pumber T
fraction of the of modes
exiting period

Fig.7-1-7-2 1/1000 - 3-6 0.01
Fig.7-3 1/20 0.05 1-3-6 0
Fig.7-4-7-5 1/100 0.05 1-3-6 0.01

Fig.7-6 1/100 0.05 1-3-6 0-0.01

Table 2-I: Geometric Non-Linearity

Note: The time steps are the minimum required to ensure
convergence and accurate response caloulations. Except for
the case with no damping, the expansion using one mode

gave essentially the same result as the expanmsion with more



modes.

Several time simulation runs were performed. A linear modal damping wss
also introduced. The simulation results can be seen in Table 2-1.  The
amplitude of the imposed motion is taken as equal to 1 , and the amplitude
at the middle of the cable is given in the graphs. Also the temsion variation

is calculated.

In figures 2-1 and 2-2 the effect of a pure geometric non-linearity is
studied. DBecause no damping is present, a beating phenomenon, caused by the
non-decaying transient solution, is obtained. The dynamic tension oscillates at

double the exciting frequency as expected.

Figure 2-3 shows the response with linear damping only. Figures 2-4 and
2-5 show the effect of the geometric non-linearity with some damping included.
Figure 2-6 presents a comparison between the motion without geometric non-
linearity and the motion with geometric non-linearity. The geometric non-
linearity is clearly limiting the amplitude of the motion. The final value of
the response with geometric non-linearity is around 3 at resonance, which

agrees well with Oplinger's theoretical and experimental investigation.

2.3 Linear Cable Model with the Non-Linear Drag Force

In order to study the effect of the drag force on the motions of a cable,
it was decided to use the linearised cable model, with the drag forces treated
as external forces. In this example a guy of a guyed tower was excited in the

normal direction, at the top.

The data for the guy are:
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Toop = 1332000N
bot = 1155006 N
Mass = 487 kg/m
Added mass = 6.3 kg/m
Net weight = 414.98 N/m
D, = 0.0880 m
EA = 130 10° N
Length = 1036 m
Depth = 426,70 m
Che = 1.2
Cp. == 0.05

No externa! current

A static snalysis of the problem gives the following results:

bop = 33.056°
Bror = 14874°
Ax = 940.68 m
™ = 24.399°

¢, is the angle formed between the cable chord and the horizontal.

The linear dynamics of this example were slready discussed in chapter 1
Using the modes, described in chapter 1 the influence of the drag forces was
studied by exciting the cable with a top motion in the normal direction. The
simulations were done using 4 - 8 - 18 modes. The results for 8 modes are
shown here. The.simula.tion with four modes gave a similar envelope curve
except. for the high amplitude motions. The results are giver in figures 2-7
through 2-10. The excitation frequency was equal to the first resonance
frequency except for figure 2-7, for which excitation causes quasi-static motion.
The plots represent the superposition of the shapes of the cable obtained at
different time steps, so that an envelope of the transverse response of the
cable is obtained. {This envelope contains also the transient phenomena) The
plots give the motion normal to the static shape at each point expressed as a

fraction of the A/D ratio, which was varied between 1.5 and 100. The
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dominant effect of the drag force at high amplitudes becomes clear.

The increasing importance of the drag force can simply be explained by

Jooking at the ratio of inertia versus drag forces:

2 42
-FE,_O.SprDDw A
- 2 2
in ptot1/4“Dw ‘ft
2 p, A
=-—Cp—
T Prot

2.4 Comparison of Non-Linear Cable Model Results with Davenport’s

Experiments

A computer code using the non-linear modal expansions, described in part
I chapter 5 was developed. The results of the code were compared with

experimental data obtained by Davenport [Davenport 65].

Davenport's experiments consisted of moving the top of a guy cable
sinusoidally in the horizontal direction through an excentric mechanism driven
by an electric motor. The horizontal tension was measured by strain gauges.
The horizontal motion at the top was also measured (See figure 2-11). The
cable consisted of a piano wire of 0.026 inch diameter with cylindrical weights
attached, to obtain the correct total weight to tension ratio. The cable was
immersed in different liquids {oi] or water) during the experiments to obtain
different damping characteristics. Only one experiment (case 2.1 in water) was

considered in this comparison.

The horizontal amplitude of excitation in the experiment was set at 0.01

inch. The data for the experiment are ;
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L = 11 ft

o) = 41.06°

H./AE = 0.000671

WL/H, = 0.202 (W is weight in air)

Davenport measured the horizontal component of the dynamic tension
caused by an imposed horizontal motion at the top for various frequencies.
The amplitude of the motion was 0.01 inch. The measured tension can be
viewed, apart from a scale factor, as the impedance function S discussed in
part 1. For the given amplitude, the geometric non-linear effects are not
important and the damping forces are linear. The linear damping is due to
the very low Reynolds number for both the oscillating cable and the attached

eylindrical weights.

A number of time simulations, using the data of Davenport’s experiment,
were performed using the non-linear cable code. A linear modal damping was
included in the code to simulate the linear damping of the cable. A damping
coefficient of 4%, as suggested by Davenport, was used. This agrees
approximately with the range of damping coefficients suggested by Ramberg
and Griffin [Ramberg 77]. The selected damping coefficient should only be
considered as a best estimate given the complicated confliguration of the cable
with the attached ecylindrical weights. The time simulations were continued

unti! a steady state was reached (10-20 periods}.

The results are plotted on the graphs provided by Davenport. The
frequency has been non-dimensionalised with respect "to the first natural
frequency of the equivalent string and the transfer function has been non-

dimensionalised with respect to the horizontal dynamic stiffness coefficient of



-

yl

Real Part

31 Imaginary Part L ﬁ'

aQ —

Figure 2-12: Impedance Function in the Horizontal Direction
{Davenport 65}



-89-
the equivalent string.

—_ . ; . e 2
S, = S, /k with k = EA/L cos®¢,

X

g =wfw, withw == [H./M)IIQ/L

Using the linear cable theory the eigenfrequencies were calculated as (see

part I):

w 1.73 symmetric

Wy = 2.04 anti-symmetric

Wy 3.06 symmetric

W, = 4.02 anti-symmetric

The transfer function obtained by the time simulations can be found in

figure 2-12. The solid line represents Davenport’s theoretical calculations. The
dotted line shows the experimental results and the line annotated by plus(+)
symbols shows the results obtained from the simulations. The simulation
results agree fairly well with the experimentai data considering the rough
estimation of the damping coefficient. The location of the eigenfrequencies is
predicted accurately using the linear cable thedry outlined in this report. The
symmétric modes are the only ones which econtribute significantly to the
transfer function, as expected. The time simulations predicted a steady state

sinusoidal response, which was actually observed experimentally by Davenport.
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2.5 A Comparison between the Non-linear Cable Model and Non-
linear String Model

The results of the previous section were all within the linear regime. To
test the code in the non-linear regime, the string example discussed in section
2.1 was simulated using tbe pon-linear cable model. The data used can be
found in section 2.1. Tbe results ean be found in figures 2-13 and 2-14, where
it can be seen that the strings results are recovered. The major difiference
between the string and the cable analysis lies in the fact that in the string
analysis the assumption is made, a priori, that the dynamic tension is constant
over the length. If such an assumption is not made, the elastic modes seem to
play an essential role in the redistribution of the dynamic temsion over the
cable, and they must be included to obtain a dynamic tension which is almost
constant throughout the cable. This means that in the non-linear geometric
regime elastic vibration modes must be included to get accurate results. The
prediction of the motion in the middle, though, can be predicted accurately

even when the elastic modes are left out of the response calculations.

To show the influence of sag on the geometric non-linearity, a cable
weight term was added to the equations used in the previous example, which
causes the cable to sag. This of course causes an asymmetric behavior of the
cable; The dynamic tension when the cable is below its equilibrium position is
larger for a cable than for a string, while the opposite is true when the cable
moves above its equilibrium position. This can be seen in figures 2-15 and
9.16. The total cable weight to lengih ratio is still very small in this case
{WL/H. = 0.005). For a larger sag, the peak in the upward direction of the

non-linear tension will disappear completely. Also, the linear component of the
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SIMULATION: NORMAL SINUSOIDAL MOTION TO0P
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tension plays a significant role when the amplitude of the motion is small

2.6 Nonlinear Boundary Condition

To illustrate the effect of a non-linear boundary condition, a sinusoidal
motion was imposed on a string which is laying for one third of its length on
a horizontal surface. The data for the string are again the values used in
section 2.1. For the timesimulation a linear spring stiffness of 1000 N/m and
a damping of 2000 N s/m was used. A timestep of 1/200th of the period
gave accurate results for the motions along the length (see figure 2-17). In
this case the motions are highly dependent on the stiffness and damping
selected. Further investigation how this selection influences the calculated

response of mooring lines will certainly be required.

2.7 Snap motions

A horizontal eable was subjected to a horizontal motion of one of its end

points. The data for the cable considered are:

H = 88 300 N
Mass = 884 kg/m
E-A = 1210° N
Length = 365 m
Depth = 0m

No drag forces, no added mass considered

Figure 2-18 and 2-19 present the simulated time history at point 1/5th of the
cable length from the fixed end with the excitation consisting of a harmonic

oscillation of the form:
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SIMULATION: NORMAL SINUSOIDAL MOTION TOF
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Figure 2-17: String with Nonlinear Boundary Condition

Bottom over 1/3 of the length of the string
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p = 0.0003 sinw,t (2.1}

In figure 2-18 the frequency is st the first elastic frequency and in figure 2-19
the excitation is at the first transverse patural frequency. The simulations
were carried out using the first ten transverse mode shapes and the first five
elastic mode shapers neglecting all other modes except the one bracketing the
elastic modes (See part I chapter 8). The time step was set at 0.0012 second,

after some trial and error determined this to be 8 safe and stable value.

The interesting feature in both of these figures is the time lag before the
start of apy significant motion. If the elastic waves travelled at a speed equal
to the pure elastic wavespeed,

EA ¢
eg= ( — 0% = 3 683 m/S (2.2)
m
it should take the motion 0.079 seconds to reach the point being studied.

Carefu! study of the figures reveals that this is indeed the case which confirms

the succesful inclusion of the elastic waves in the simulation.
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Chapter 3

NUMERICAL APPLICATIONS
OF LINEARIZATION TECHNIQUES

3.1 Introduction

In this chapter, 2 number of comparison between the drag linearization
results and time simulation ecalculstions are provided. For relative small
motions the agreement is relatively good. For larger motions geometric
ponlinearities become important and the linearization techmique underestimates
the tension generated. It will be shown that the dynamic tension generated
due to a unit amplitude is significantly affected by the drag nonlinearity. Also
the effect of the mooring line stiffness on the dynamic tension will be briefly

discussed.

3.2 Comparison of Linearization Results and Nonlinear Time

Simulations

In this section, the motions predicted by the linearized code and the
ponlinear time domain code are compared directly. For this purpose a string
and s cable were excited st one end in the transverse direction at the
resonance frequencies. The importance of the hydrodynamic drag bas been

demonstrated in the previous chapter.



3.2.1 String Results

The data for the string analysed are:

T

Total Mass
Net weight
DO

EA

Length
Depth

gDn

¢
No external current

One end of the string was moved sinusoidally at the first string resonance
frequency which is a symmetric mode. The comparison between the linearized
theory and the time simulation can be found in figures 3-1, 3-2 and 3-3. The
figures are the superposition of one period of the time simulations at steady
state and the lipearized results for different ratios of amplitude to diameter.
The agreement between the linearized solution and the time simulation is
acceptable even for large ratios of amplitude to diameter. In figures 3-i, 3-5
and 3-6 the normal displacement along the string are given.

displacements have been obtained by the [ull nonlinear code.

T

3.2.2 Cable Results

The data for the cable snalysed are (identical to guy in previous

chapters):

1 000 000 N
48.7 kg/m

0 N/m
0.088¢ m
1.30 10 N
1036 m

0 m

1.2

0.05

This normal
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SIMULATION: NORMAL SINUSOIDAL MOTION TOP
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Figure 3-1: Linearization of the Drag Forces: String 1D
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SIMULATION: NORMAL SINUSOIDAL MOTION TOP
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Figure 3-2:
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Linearization of the Drag Forces: String 10D
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SIMULATION: NORMAL SINUSCIDAL MOTION TOP
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SIMULATION: NORMAL SINUSOIDAL MOTION TOP
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Figure 3-4: Displacement: String 1D
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NORMAL SINUSOIDAL MOTION TOP
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Figure 3-5: Displacement: String 10D



SIMULATION: NORMAL SINUSOIDAL MOTION TOP

150

N 100-
0
R

M 504
A
L.

0
M
0

T =50-
I
0

N ""100-1

-150 . .
- 0.0 0.5 1.0
SPACE

Figure 3-6: Displacement: String 100D
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Twp = 1332 000 N
Tyot = 1155096 N
Mass = 48.7 kg/m
Added mass = 6.3 kg/m
Net weight = 414.98 N/m
D, = 00889 m
E-A = 130 10N
Length = 1036 m
Depth = 4267 m
C = 12
Cor = 005

top = 33.056°

bot = 14874

Ax = 94068 m
by = 24.399°

No external current

One end of the cable was moved sinusoidally at the first string resonance
frequency which is a assymmetric mode. The comparison between the
linearized theory and the time simulation can be found in figures 3-7, 3-8 and
3-9. The figures are the superposition of one period of the time simulations at
steady state and the linearized results for different ratios of amplitude to

diameter.

The agreement between the linearized solution and the time simulation is
also acceptable in this case. In figures 310, 311 and 3-12 the normal
displacements along the cable are given. This normal displacements have been
obtained by the full nonlinear code. In section 2.3 equivalent envelopes where
obtained by using the linearized equations with a nonlinear drag force. Here
the geometric nonlinear effects are included in the analysis.  The non
symmetric motion of the cable due to geometric stiffening can clearly be

observed for the 100 D case. This should be compared with the result in

section 2.3



ZOMHOR DPINWOA

-90-

CABLE NORMAL SINUSOIDAL MOTION TOP
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Figure 3-7:
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CABLE NORMAL SINUSOIDAL MOTION TOP

Figure 3-8:
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Linearization of the Drag Forces: Cable 10D
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CABLE NORMAL SINUSOIDAL MOTION TOP
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Figure 3-10: Displacement: Cable 1D
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Figure 3-11: Displacement: Cable 10D
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CABLE NORMAL SINUSOIDAL MOTION TOP
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Figure 3-12: Displacement: Cable 100D
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3.3 Equivalent Impedance functions

Using the equivalent linearization, equivalent impedance functions can be
obtained for sinusoidal motion of the top. Two examples are snalysed: The
guyed tower example and a slacker mooring line used in 2 typical semi-

submersible configuration. For the theory on impedance functions the reader

is referred to part L.

3.3.1 §_ for the Guy

The data for this case can be found in the previous section. Four
borizontal top impedance functions are given for different amplitudes in figures
313, 314, 315 and 3-16. Figure 3-13 is ouly to show the undamped response
of the system. In the case of such‘ a small motion the drag force model used
is of course not really valid. Tbe impedance fuactions are substantially
modified due to the strong effect of the drag forces. The dynamic response of

the cable is dominated by the drag elfects.

3.3.2 Sq, for the Mooring Line of a Semi-submersible

The data for the selected mooring line are:
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Figure 3-13:

Sex for a Guy of 2 Guyed Tower: 0.01D
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TOP EXCITATION OF 10 DIAMETERS
EQUIVALENT DAMPING FORCE
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Figure 3-15: 5 for a Guy of a Guyed Tower: 10D
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TOP EXCITATION OF 100 DIAMETERS
EQUIVALENT DAMPING EORCE
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Figure 3-18: S for a Guy of a Guyed Tower: 100D
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Ttop = 700 000 N
Tyor = 407 286 N
Mass = 33.51 kg/m
Added mass = 6.3 kg/m
Net weight = 290 N/m
D, = 00889 m
E-A = 0424 10° N -
Length = 1700 m
Depth = 700 m
Cpn = 12
Cp: = 005

top = 44.73°
W = o
Ax = 1503.22 m
¢ = 24.97°

ay
No external current

In this case the dynamic tension per unit amplitude motion in the horizontal
direction has been plotted for various amplitudes. The result can be found in
figure 3-17. A limited number of results of time simulations have been
superimposed on the plot. Agreement is good until a motion amplitude of
10D. At 100D motion amplitude the linearized theory predicts much lower
values of dynamic tension as the time simulations. The figure shows 2lso that
the dynamic tension can increase due to drag effects in the low frequency
range. The drag forces are the dominant forces on the cable, and therefore.

.

induce significant dynamic tension as they reduce the motions.

3.4 Investigation of the Change of Tension Impedance function due
to Lambda

It is well know that in linear theory large dynamic tensions are predicted
near cross-over. In this example the stiflness of mooring line was varied

continously to investigate how this behavior is influenced by the drag forces.
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Dynamic Tension per unit amplitude
in the horizontal direction
(equivalent linearized damping)

400000 : 4
300000+
d
200000+ e}
100000+ )
‘/

O-F= P : 4 :
0.2 0.4 0.6 0.8 1.0 1.2
Frequency (rad/sec)

......... 100 D

. No Damping
O 1 D time sim.
A 10 D time sim.
o 100 D time sim.

Figure 3-17: Sp, for a Mooring Line
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The data for the selected mooring lines are:

T, = 1400 000 N
op '
Thot = 1197 618 N
Mass = 33.51 kg/m
Added mass = 8.3 kg/m
Net weight = 2080 N/m
D, = 00889 m
Length = 1700m
Depth = 700 m
C = 12

D
Cp, = 005

— Q

top = 3384

b = 13-840

ol
Ax = 154531 m
¢ = 24.37°

F 3
No external current, the stiffness was varied so that ¥
varied between 10 and 200.

The results can be found in figures 3-18, 319 and 3-20. The figures show the
dynamic .tension per unit horizontal and vertical motion at the first two
eigenfrequencies when A? is varied. When A2 is 47- the two eigenfrequencies
are very close to each other and according to linear theory a significant
dynamic tension can be generated. This linear prediction is confirmed
qualitatively by figure 3-18. At larger motion amplitudes the dynamic tension
is increasing when the line becomes less extensible. It should be emphasised
that this are the results at two particular frequencies, and that these are not
necessarily the frequencies where the generated dynamic tension has a

maximum.
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DYNAMIC TENSION PER UNIT AMPLITUDE
OF EXCITATION VS. LAMBDA**2
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Figure 3-18: Sp, for a Mooring Line in functioﬁ of Lambda: 0.01D
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DYNAMIC TENSION PER UNIT AMPLITUDE
OF EXCITATION VS. LAMBDA**2
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Figure 3-19: S;, for a Mooring Line in function of Lambda: 1D
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DYNAMIC TENSION PER UNIT AMPLITUDE
OF EXCITATION VS. LAMBDA**2

1000000 :

+ 20U

opX

0 100 200
LAMBDA® * 2

X-1st Ereq.
Y-1st Freq.
X-2nd Ereq.
Y-2nd Freq.

---------

Figure 3-20: Sq for a Mooring Line in function of Lambda: 10D



